张健
姓名:张健
职称:教授、研究员、研究员级高级工程师
Email: 56071007@qq.com
学历及学术经历:
博士,亚博赞助阿根廷球队、扬州大学硕士生导师,现任亚博赞助阿根廷球队生物技术系主任,先后担任上海交大农科集团、汉枫集团(加拿大上市公司)高管。
先后入选江苏省第四期、第五期“333高层次人才培养工程”,江苏省第十二批“六大人才高峰”培养对象。市科技创新创业导师团成员,市第七届青年科技奖获得者,市第八届优秀科技工作者。兼任南通市观赏植物遗传育种重点实验室主任,中国林学会盐碱地分会理事,江苏省植物学会理事,南通市农学会副理事长等职,国内外多家知名期刊的特邀审稿人和国家重点研发计划答辩评审专家。
2010年以来主持国家自然科学基金、中央财政、省重点研发、省农业自主创新,省“六大高峰人才”等省级以上项目14项,已获国家发明专利授权24项,国家林业局植物新品种权2项,制定省市地方标准28项,共发表论文84篇(含SCI 29篇),获教育部高等学校科技进步一等奖、国家林业局梁希林业科学技术二等奖、江苏省科技进步三等奖、全国商业科技进步一等奖等奖项。
主讲本科生《生态学》和研究生《分子生态学》。
主持的主要课题(2018年以来):
1. 国家自然科学基金面上项目:基于异速生长理论的旱柳根系耐盐基因网络枢纽发掘(31971681),2020.01-2023.12,58万元;
2. 中央财政林业改革发展资金项目:红叶珍贵苗木繁育核心技术集成示范与推广(苏[2021]TG03),2021.01-2023.12,60万元;
3. 江苏省重点研发计划(现代农业)重点项目,基于耐盐、色叶基因检测聚合的紫薇新品种选育(BE2018326),2018.07-2021.06,150万元;
4. 江苏林业科技创新与推广项目:典型常绿珍贵乡土树种的定向培育与节本化试验研究(LYKJ[2021]11),2021.07-2023.06,40万元;
5. 江苏林业科技创新与推广项目:雄性窄冠速生乔木柳用材品种培育与栽培应用(LYKJ[2018]36),2018.10-2020.09,40万元;
6. 江苏省农业科技自主创新资金项目:苏中沿海滩涂菌草资源复合利用与互作型林草立体种植技术创新(CX19(3121)),2019.07-2021.06,40万元,共同主持;
7. 南通市自然资源和规划局委托项目:南通市林木种质资源保护和利用规划,2020.12.24-2021.3.31,18.2万元,主持。
获奖情况:
1. 2014年教育部科技进步一等奖;
2. 2016年国家林业局梁希林业技术科技二等奖;
3. 2016年江苏省科技进步三等奖。
主要研究领域:
1. 园林植物抗逆分子调控机制与育种;
2. 林木生态碳汇提升技术研发;
3. 园林植物观赏性状分子机理;
4. 林木与微生物困难立地互作机制。
第一发明人授权发明专利
1.一种灌木柳促成开花的方法(ZL202010932305.1)
2.旱柳抗逆快速进化基因的发掘方法(ZL202111128157.9)
3.一种基于电阻值快速评价柳树品种耐盐性的方法(ZL202010815719.6)
4.耐淹柳树新品种快速育种方法(ZL202010495073.8)
5.旱柳耐盐枢纽基因的发掘方法(ZL201910893406.X)
6.基于基因检测聚合选育耐盐色叶紫薇的方法(ZL201810471345.3)
7.柳树沿海滩涂耐盐性早期鉴定方法(ZL201210160422.6)
8.一种保护地多功能用植物耐盐性测定盐池(ZL201510087647.7)
9.江苏沿海滩涂降盐的工程综合改良法与景观模式(ZL201510476565.1)
10.沿海盐碱地柳树直插成苗方法(ZL201110037206.8)
11.促进柳树杂交的方法(ZL201110135595.8)
12.挪威枫种子发芽方法(ZL200910026689.4)
代表性论文(2020年以来):
1. Wei H, Movahedi A, Liu G, et al. Poplar glycosylphosphatidylinositol-anchored lipid transfer proteins respond to osmotic stress by regulating fatty acid biosynthesis[J]. Industrial Crops and Products, 2022, 179: 114683.
2. Wei H, Movahedi A, Liu G, et al. Characteristics, expression profile, and function of non-specific lipid transfer proteins of Populus trichocarpa[J]. International Journal of Biological Macromolecules, 2022, 202: 468-481.
3. Wei H, Movahedi A, Yang J, et al. Characteristics and molecular identification of glyceraldehyde-3-phosphate dehydrogenases in poplar[J]. International Journal of Biological Macromolecules, 2022, 219: 185-198.
4. Chen Y, Dai Y, Li Y, et al. Overexpression of the Salix matsudanaSmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5[J]. BMC Plant Biology, 2022, 22(1): 1-17.
5. Wei H, Movahedi A, Zhang Y, et al. Long-chain acyl-CoA synthetases promote poplar resistance to abiotic stress by regulating long-chain fatty acid biosynthesis[J]. International Journal of Molecular Sciences, 2022, 23(15): 8401.
6. Wei H, Movahedi A, Xu S, et al. Genome-wide characterization and expression analysis of fatty acid desaturase gene family in poplar[J]. International Journal of Molecular Sciences, 2022, 23(19): 11109.
7. Chen Y, Yang J, Guo H, et al. Comparative transcriptomic analysis reveals potential mechanisms for high tolerance to submergence in arbor willows[J]. PeerJ, 2022, 10: e12881.
8. Zhong F, Fan X, Ji W, et al. Soil fungal community composition and diversity of culturable endophytic fungi from plant roots in the reclaimed area of the eastern coast of China[J]. Journal of Fungi, 2022, 8(2): 124.
9. Yu C, Ke Y, Qin J, et al. Genome-Wide Identification of CBL-Interacting Protein Kinase (CIPK) Gene Family Reveals Members Participating in Abiotic Stress in the Ornamental Woody Plant Lagerstroemia indica[J]. Frontiers in Plant Science, 13:942217.
10. Wei H, Movahedi A, Liu G, et al. Comprehensive analysis of carotenoid cleavage dioxygenases gene family and its expression in response to abiotic stress in poplar[J]. International Journal of Molecular Sciences, 2022, 23(3): 1418.
11. Wei H, Movahedi A, Liu G, et al. Genome-wide characterization and abiotic stresses expression analysis of annexin family genes in poplar[J]. International Journal of Molecular Sciences, 2022, 23(1): 515.
12. Zhang J, zheng Shi S, Jiang Y, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow (Salix matsudana)[J]. PeerJ, 2021, 9: e11076.
13. Liu G, Yang Q, Gao J, et al. Identify of Fast-growing related genes especially in height growth by combining QTL analysis and transcriptome in Salix matsudana (Koidz)[J]. Frontiers in Genetics, 2021, 12: 432.
14. Liu G, Li Y, Liu Y, et al. Genome-wide identification and analysis of monolignol biosynthesis genes in Salix matsudana Koidz and their relationship to accelerated growth[J]. Forestry Research, 2021, 1(1): 1-11.
15. Liu G, Li Y, Gao J, et al. Detecting the different responses of roots and shoots to gravity in Salix matsudana (Koidz)[J]. Forests, 2021, 12(12): 1715.
16. Yu C, Lian B, Fang W, et al. Transcriptome-based analysis reveals that the biosynthesis of anthocyanins is more active than that of flavonols and proanthocyanins in the colorful flowers of Lagerstroemia indica[J]. Biologia Futura, 2021: 1-16.
17. Zhang J, Yuan H, Li Y, et al. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz[J]. Horticulture Research, 2020, 7(1):11.
18. Chen Y, Jiang Y, Chen Y, et al. Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by transcriptomic analysis[J]. PloS One, 2020, 15(8): e0236129.